Roll No. Total No. of Pages :

Total No. of Questions: 09

B.Tech.(AE) (2011 Onwards) (Sem.-6) COMPUTER AIDED AUTOMOTIVE DESIGN

Subject Code: BTAE-601 Paper ID: [A2380]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- (a) What is the different type of cylinder arrangements?
- (b) What is the specific advantage of worm and worm wheel?
- (c) What is use of wheel spindle bearing?
- (d) What is the number of piston rings and what are their types?
- (e) What do you mean by gear ratio?
- (f) What is the difference between power and torque curve?
- (g) Explain valve train.
- (h) Why the inlet valve is bigger than the outlet valve?
- (i) What do you mean by interference in gears?
- (j) What is a sprocket?

SECTION-B

- 2. Two parallel shafts, about 600 mm apart are to be connected by spur gears. One shaft is to run at 360 *r.p.m.* and other at 120 *r.p.m.* Design the gears, if the circular pitch is to be 25 mm.
- 3. Explain in detail king pin bearing.
- 4. Discuss briefly final drive design considerations in different types of propeller shafts.
- 5. What conditions must be satisfied in order that a pair of spur gears may have a constant velocity ratio?
- 6. Discuss different type of failure occurs in the gear.

SECTION-C

- 7. Write short notes on:
 - (a) Valve gear mechanism
 - (b) Rocker arm
 - (c) Moments and stresses in different sections of front axle
 - (d) Flow visualization technique.
- 8. A roller chain of 16 mm pitch is to be used to transmit 5 kW of power between a 15-tooth driving sprocket that rotates at a constant speed of 250 *r.p.m.* and a 50-tooth driven sprocket. Determine:
 - (a) The pitch diameters of the sprockets
 - (b) The mean chain velocity
 - (c) The output shaft torque, if mechanical efficiency is 100%
 - (d) The velocity of impact between chain rollers and the smaller sprocket.
- 9. A pump is driven by an electric motor through a open type flat belt drive. Determine the belt specifications for the following data.
 - Motor pulley diameter (d_s) = 300 mm, Pump pulley diameter (d_L) = 600 mm Coefficient of friction (μ_s) for motor pulley = 0.25, Coefficient of friction (μ_L) for pump pulley = 0.20, Center distance between the pulleys = 1000 mm, Rotational speed of the motor = 1440 *r.p.m.*, Power transmission = 20kW, density of belt material (ρ) = 1000 kg/m³, allowable stress for the belt material (σ) = 2 MPa, thickness of the belt = 5 mm.